English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Magnon spectrum of the Weyl semimetal half-Heusler compound GdPtBi

MPS-Authors
/persons/resource/persons205569

Sukhanov,  A. S.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126847

Shekhar,  C.
Chandra Shekhar, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  C.
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sukhanov, A. S., Onykiienko, Y. A., Bewley, R., Shekhar, C., Felser, C., & Inosov, D. S. (2020). Magnon spectrum of the Weyl semimetal half-Heusler compound GdPtBi. Physical Review B, 101(1): 014417, pp. 1-8. doi:10.1103/PhysRevB.101.014417.


Cite as: http://hdl.handle.net/21.11116/0000-0005-9812-B
Abstract
The compound GdPtBi is known as a material where the nontrivial topology of electronic bands interplays with an antiferromagnetic order, which leads to the emergence of many interesting magnetotransport phenomena. Although the magnetic structure of the compound was previously reliably determined, the magnetic interactions responsible for this type of order have remained controversial. In the present study, we employed time-of-flight inelastic neutron scattering to map out the low-temperature spectrum of spin excitations in single-crystalline GdPtBi. The observed spectra reveal two spectrally sharp dispersive spin-wave modes, which reflects the multidomain state of the k = (1/2 1/2 1/2) fcc antiferromagnet in the absence of a symmetry-breaking magnetic field. The magnon dispersion reaches an energy of similar to 1.1 meV and features a gap of similar to 0.15 meV. Using linear spin-wave theory, we determine the main magnetic microscopic parameters of the compound that provide good agreement between the simulated spectra and the experimental data. We show that GdPtBi is well within the q phase and is dominated by second-neighbor interactions, thus featuring low frustration.