English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Highly Efficient Metal-Free Nitrogen-Doped Nanocarbons with Unexpected Active Sites for Aerobic Catalytic Reactions

MPS-Authors
/persons/resource/persons237818

Lin,  Yangming
Research Department Schlögl, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons237819

Liu,  Zigeng
Research Department Schlögl, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons243047

Lu,  Qing
Research Department Schlögl, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons237769

Heumann,  Saskia
Research Department Schlögl, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons247190

Yu,  Linhui
Research Department Schlögl, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lin, Y., Liu, Z., Niu, Y., Zhang, B., Lu, Q., Wu, S., et al. (2019). Highly Efficient Metal-Free Nitrogen-Doped Nanocarbons with Unexpected Active Sites for Aerobic Catalytic Reactions. ACS Nano, 13(12), 13995-14004. doi:10.1021/acsnano.9b05856.


Cite as: https://hdl.handle.net/21.11116/0000-0006-406A-B
Abstract
Nitrogen (N)-doped nanocarbons (NDN) as metal-free catalysts have elicited considerable attention toward selective oxidation of alcohols with easily oxidizable groups to aldehydes in the past few years. However, finding a new NDN catalytic material that can meet the requirement of the feasibility on the aerobic catalytics for other complicated alcohols is a big challenge. The real active sites and the corresponding mechanisms on NDN are still unambiguous because of inevitable coexistence of diverse edge sites and N species based on recently reported doping methods. Here, four NDN catalysts with enriched pyridinic N species and without any graphitic N species are simply fabricated via a chemical-vapor-deposition-like method. The results of X-ray photoelectron spectroscopy and X-ray absorption near-edge structure spectra suggest that the dominating N species on NDN are pyridinic N. It is demonstrated that NDN catalysts perform impressive reactivity for aerobic oxidation of complicated alcohols at an atmospheric pressure. Eleven kinds of aromatic molecules with single N species and tunable pi conjugation systems are used as model catalysts to experimentally identify the actual role of each N species at a real molecular level. It is suggested that pyridinic N species play an unexpected role in catalytic reactions. Neighboring carbon atoms in pyridinic N species are responsible for facilitating the rate-determining step process clarified by kinetic isotope effects, in situ nuclear magnetic resonance, in situ attenuated total reflectance infrared, and theoretical calculation. Moreover, NDN catalysts exhibit a good catalytic feasibility on the synthesis of important natural products (e.g., intermediates of vitamin E and K3) from phenol oxidation.