Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

In Situ EPR Characterization of a Cobalt Oxide Water Oxidation Catalyst at Neutral pH

MPG-Autoren
/persons/resource/persons237816

Kutin,  Yuri
Research Department Lubitz, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons237557

Cox,  Nicholas
Research Department Lubitz, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons237637

Lubitz,  Wolfgang
Research Department Lubitz, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons237711

Schnegg,  Alexander
Research Department DeBeer, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons237700

Rüdiger,  Olaf
Research Department DeBeer, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kutin, Y., Cox, N., Lubitz, W., Schnegg, A., & Rüdiger, O. (2019). In Situ EPR Characterization of a Cobalt Oxide Water Oxidation Catalyst at Neutral pH. Catalysts, 9(11): 926. doi:10.3390/catal9110926.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-4043-6
Zusammenfassung
Here we report an in situ electron paramagnetic resonance (EPR) study of a low-cost, high-stability cobalt oxide electrodeposited material (Co-Pi) that oxidizes water at neutral pH and low over-potential, representing a promising system for future large-scale water splitting applications. Using CW X-band EPR we can follow the film formation from a Co(NO3)(2) solution in phosphate buffer and quantify Co uptake into the catalytic film. As deposited, the film shows predominantly a Co(II) EPR signal, which converts into a Co(IV) signal as the electrode potential is increased. A purpose-built spectroelectrochemical cell allowed us to quantify the extent of Co(II) to Co(IV) conversion as a function of potential bias under operating conditions. Consistent with its role as an intermediate, Co(IV) is formed at potentials commensurate with electrocatalytic O-2 evolution (+1.2 V, vs. SHE). The EPR resonance position of the Co(IV) species shifts to higher fields as the potential is increased above 1.2 V. Such a shift of the Co(IV) signal may be assigned to changes in the local Co structure, displaying a more distorted ligand field or more ligand radical character, suggesting it is this subset of sites that represents the catalytically 'active' component. The described spectroelectrochemical approach provides new information on catalyst function and reaction pathways of water oxidation.