Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Highly Dispersed Ni-0/NixMg1-xO Catalysts Derived from Solid Solutions: How Metal and Support Control the CO2 Hydrogenation

MPG-Autoren
/persons/resource/persons22071

Schlögl,  Robert
Research Department Schlögl, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Millet, M.-M., Tarasov, A. V., Girgsdies, F., Algara-Siller, G., Schlögl, R., & Frei, E. (2019). Highly Dispersed Ni-0/NixMg1-xO Catalysts Derived from Solid Solutions: How Metal and Support Control the CO2 Hydrogenation. ACS Catalysis, 9(9), 8534-8546. doi:10.1021/acscatal.9b02332.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-5B17-B
Zusammenfassung
Among the Ni-based catalysts studied for CO2 activation reactions, NixMg1-xO solid solutions present advantageous characteristics, mainly linked with the homogeneous distribution of the Ni species inside the MgO structure, leading to highly dispersed Ni-0 supported catalysts. In this work, we report on the preparation and characterization of NixMg1-xO precatalysts calcined at different temperatures. The resulting Ni-0/NixMg1-xO catalysts were tested for the methanation of CO2. Following the structural, morphological, and chemical changes during both the calcination and the reduction, we were able to observe clear correlations between the reactivity of the catalysts and their physical properties, leading to a better understanding of the reaction mechanism and the respective contributions of the metal and the support. While no change was observed in the formation of CH4 over the range of temperature tested, the CO formation as byproduct clearly changed with the increasing temperatures. Our results are consistent with the hypothesis that two different CO formation mechanisms are occurring, but depending on the temperature, one dominates over the other. This study illustrates the importance of the complex interplay of metal particles and oxidic support (at the interface), both actively participating in the CO2 hydrogenation mechanism.