English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A High Spin Mn(IV)-Oxo Complex Generated via Stepwise Proton and Electron Transfer from Mn(III)-Hydroxo Precursor: Characterization and C-H Bond Cleavage Reactivity

MPS-Authors
/persons/resource/persons237833

Paul,  Satadal
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Biswas, S., Mitra, A., Banerjee, S., Singh, R., Das, A., Paine, T. K., et al. (2019). A High Spin Mn(IV)-Oxo Complex Generated via Stepwise Proton and Electron Transfer from Mn(III)-Hydroxo Precursor: Characterization and C-H Bond Cleavage Reactivity. Inorganic Chemistry, 58(15), 9713-9722. doi:10.1021/acs.inorgchem.9b00579.


Cite as: https://hdl.handle.net/21.11116/0000-0005-A935-1
Abstract
The oxomanganese(IV) complex [(dpaq)Mn-IV (O)](+)-Mn+(1-Mn+ , Mn+ = redox-inactive metal ion, H-dpaq = 2-[bis(pyridin-2-ylmethyl)]amino-N-quinolin-8-ylacetamide), generated in the reaction of the precursor hydroxomanganese(III) complex 1 with iodosylbenzene (PhIO) in the presence of redox-inactive metal triflates, has recently been reported. Herein the generation of the same oxomanganese(IV) species from 1 using various combinations of protic acids and oxidants at 293 K is reported. The reaction of 1 with triflic acid and the one-electron-oxidizing agent [Ru-III (bpy)(3)](3+) leads to the formation of the oxomanganese(IV) complex. The putative species has been identified as a mononuclear high-spin (S = 3/2) nonheme oxomanganese(IV) complex (1-0) on the basis of mass spectrometry, Raman spectroscopy, EPR spectroscopy, and DFT studies. The optical absorption spectrum is well reproduced by theoretical calculations on an S = 3/2 ground spin state of the complex. Isotope labeling studies confirm that the oxygen atom in the oxomanganese(IV) complex originates from the Mn-III - OH precursor and not from water. A mechanistic investigation reveals an initial protonation step forming the Mn-III - OH2 complex, which then undergoes one-electron oxidation and subsequent deprotonations to form the oxomanganese(IV) transient, avoiding the requirements of either oxo-transfer agents or redox-inactive metal ions. The Mn-IV-oxo complex cleaves the C-H bonds of xanthene (k(2) = 5.5 M-1 s(-1)), 9,10-DHA (k(2) = 3.9 M-1 s(-1)), 1,4-CHD (k(2) = 0.25 M-1 s(-1)), and fluorene (k(2) = 0.11 M-1 s(-1)) at 293 K. The electrophilic character of the nonheme Mn-IV-oxo complex is demonstrated by a large negative rho value of 2.5 in the oxidation of para-substituted thioanisoles. The complex emerges as the "most reactive" among the existing Mn-IV/V-oxo complexes bearing anionic ligands.