English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Negative Charging of Au Nanoparticles during Methanol Synthesis from CO2/H-2 on a Au/ZnO Catalyst: Insights from Operando IR and Near-Ambient-Pressure XPS and XAS Measurements

MPS-Authors
/persons/resource/persons21743

Knop-Gericke,  Axel
Research Department Schlögl, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Research Department Schlögl, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Abdel-Mageed, A. M., Klyushin, A., Rezvani, A., Knop-Gericke, A., Schlögl, R., & Behm, J. (2019). Negative Charging of Au Nanoparticles during Methanol Synthesis from CO2/H-2 on a Au/ZnO Catalyst: Insights from Operando IR and Near-Ambient-Pressure XPS and XAS Measurements. Angewandte Chemie, International Edition in English, 58(30), 10325-10329. doi:10.1002/anie.201900150.


Cite as: https://hdl.handle.net/21.11116/0000-0005-A915-5
Abstract
The electronic and structural properties of Au/ZnO under industrial and idealized methanol synthesis conditions have been investigated. This was achieved by kinetic measurements in combination with time-resolved operando infrared (DRIFTS) as well as in situ near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and X-ray absorption near-edge spectroscopy (XANES) measurements at the O K-edge together with high-resolution electron microscopy. The adsorption of CO during the reaction revealed the presence of negatively charged Au nanoparticles/Au sites during the initial phase of the reaction. Near-ambient-pressure XPS and XANES demonstrate the build-up of O vacancies during the reaction, which goes along with a substantial increase in the rate of methanol formation. The results are discussed in comparison with previous findings for Cu/ZnO and Au/ZnO catalysts.