Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Influence of CO on the Activation, O-Vacancy Formation, and Performance of Au/ZnO Catalysts in CO2 Hydrogenation to Methanol

MPG-Autoren
/persons/resource/persons21743

Knop-Gericke,  Axel
Research Department Schlögl, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Research Department Schlögl, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Abdel-Mageed, A. M., Klyushin, A., Knop-Gericke, A., Schlögl, R., & Behm, R. J. (2019). Influence of CO on the Activation, O-Vacancy Formation, and Performance of Au/ZnO Catalysts in CO2 Hydrogenation to Methanol. The Journal of Physical Chemistry Letters, 10(13), 3645-3653. doi:10.1021/acs.jpclett.9b00925.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-A917-3
Zusammenfassung
The impact of CO on the activation and reaction characteristics of Au/ZnO catalysts in methanol synthesis from a CO2/H-2 mixture was studied by kinetic, near ambient pressure X-ray photoelectron spectroscopy and X-ray absorption spectroscopy at the 0 K-edge, together with in situ Foureir transform infrared measurements. Transient measurements under up to industrial reaction conditions (50 bar, 240 C) show a pronounced transient increase of the activity for methanol formation from CO2/H-2 after exposure to a CO/H-2 reaction gas mixture, while the steady-state activity is similar to that observed directly after oxidative pretreatment. For the reaction in CO/H-2, the much longer activation phase is accompanied by formation of CO2 due to reaction of CO with the ZnO catalyst support. This leads to O-vacancy formation on the support at an extent significantly higher than in CO2/H-2. The consequences of these findings on the mechanistic understanding of methanol formation from CO2/H-2 on Au/ZnO and for ZnO-supported catalysts in general are discussed.