Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Proton Translocation via Tautomerization of Asn298 During the S-2-S-3 State Transition in the Oxygen-Evolving Complex of Photosystem II

MPG-Autoren
/persons/resource/persons237774

Chrysina,  Maria
Research Department DeBeer, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons245247

De Mendonca Silva,  Juliana Cecilia
Research Department DeBeer, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons216826

Pantazis,  Dimitrios A.
Research Group Pantazis, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chrysina, M., De Mendonca Silva, J. C., Zahariou, G., Pantazis, D. A., & Ioannidis, N. (2019). Proton Translocation via Tautomerization of Asn298 During the S-2-S-3 State Transition in the Oxygen-Evolving Complex of Photosystem II. The Journal of Physical Chemistry B, 123(14), 3068-3078. doi:10.1021/acs.jpcb.9b02317.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-AA06-5
Zusammenfassung
In biological water oxidation, a redox-active tyrosine residue (D1-Tyr161 or Y-Z) mediates electron transfer between the Mn4CaO5 cluster of the driving the cluster through progressively higher oxidation states S-i (i = 0-4). In contrast to lower S-states (S-0, S-1), in higher S-states (S-2, S-3) of the Mn4CaO5 cluster, Yz cannot be oxidized at cryogenic temperatures due to the accumulation of positive charge in the S-1 -> S-2 transition. However, oxidation of Y-Z by illumination of S-2 at 77-190 K followed by rapid freezing and charge recombination between Yz and the plastoquinone radical Q(A)(center dot-) allows trapping of an S-2 variant, the so-called S-2(trapped) state (S-2(t)), that is capable of forming Y-z(center dot) at cryogenic temperature. To identify the differences between the S-2 and S-2(t) states, we used the (S2Yz center dot)-Y-t intermediate as a probe for the S-2(t) state and followed the (S2Yz center dot)-Y-t/Q(A)(center dot-) recombination kinetics at 10 K using time-resolved electron paramagnetic resonance spectroscopy in H2O and D2O. The results show that while (S2Yz center dot)-Y-t/Q(A)(center dot-) recombination can be described as pure electron transfer occurring in the Marcus inverted region, the S-2(t) -> S-2 reversion depends on proton rearrangement and exhibits a strong kinetic isotope effect. This suggests that Y-Z oxidation in the 521 state is facilitated by favorable proton redistribution in the vicinity of Y-Z, most likely within the hydrogen-bonded Y-Z-His190-Asn298 triad. Computational models show that tautomerization of Asn298 to its imidic acid form enables proton translocation to an adjacent asparagine-rich cavity of water molecules that functions as a proton reservoir and can further participate in proton egress to the lumen.