English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Spontaneous synchronization to speech reveals neural mechanisms facilitating language learning

MPS-Authors
/persons/resource/persons173724

Poeppel,  David
Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Max Planck Society;
Department of Psychology, New York University;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

sci-19-sch-03-exploring.pdf
(Publisher version), 832KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Assaneo, M. F., Ripollés, P., Orpella, J., Lin, W. M., de Diego-Balaguer, R., & Poeppel, D. (2019). Spontaneous synchronization to speech reveals neural mechanisms facilitating language learning. Nature Neuroscience, 22, 627-632. doi:10.1038/s41593-019-0353-z.


Cite as: https://hdl.handle.net/21.11116/0000-0005-A4C0-8
Abstract
We introduce a deceptively simple behavioral task that robustly identifies two qualitatively different groups within the general population. When presented with an isochronous train of random syllables, some listeners are compelled to align their own concurrent syllable production with the perceived rate, whereas others remain impervious to the external rhythm. Using both neurophysiological and structural imaging approaches, we show group differences with clear consequences for speech processing and language learning. When listening passively to speech, high synchronizers show increased brain-to-stimulus synchronization over frontal areas, and this localized pattern correlates with precise microstructural differences in the white matter pathways connecting frontal to auditory regions. Finally, the data expose a mechanism that underpins performance on an ecologically relevant word-learning task. We suggest that this task will help to better understand and characterize individual performance in speech processing and language learning.