Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A Cryogenic Silicon Interferometer for Gravitational-wave Detection

MPG-Autoren

Hennig ,  Margot
AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons226610

Leavey,  Sean
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Schneewind ,  Merle
AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Wessels ,  Peter
AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40511

Willke,  Benno
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2001.11173.pdf
(Preprint), 3MB

2001.11173.pdf
(Preprint), 7MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Adhikari, R. X., Aguiar, O., Arai, K., Barr, B., Bassiri, R., Billingsley, G., et al. (2020). A Cryogenic Silicon Interferometer for Gravitational-wave Detection. Classical and quantum gravity, 37(16): 165003. doi:10.1088/1361-6382/ab9143.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-A57B-7
Zusammenfassung
The detection of gravitational waves from compact binary mergers by LIGO has
opened the era of gravitational wave astronomy, revealing a previously hidden
side of the cosmos. To maximize the reach of the existing LIGO observatory
facilities, we have designed a new instrument that will have 5 times the range
of Advanced LIGO, or greater than 100 times the event rate. Observations with
this new instrument will make possible dramatic steps toward understanding the
physics of the nearby universe, as well as observing the universe out to
cosmological distances by the detection of binary black hole coalescences. This
article presents the instrument design and a quantitative analysis of the
anticipated noise floor.