Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Impact dynamics and heat transfer characteristics of liquid nitrogen drops on a sapphire prism

MPG-Autoren
/persons/resource/persons221664

van Limbeek,  Michiel A. J.
Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

van Limbeek, M. A. J., Nes, T. H., & Vanapalli, S. (2020). Impact dynamics and heat transfer characteristics of liquid nitrogen drops on a sapphire prism. International Journal of Heat and Mass Transfer, 148: 118999. doi:10.1016/j.ijheatmasstransfer.2019.118999.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-A666-D
Zusammenfassung
Drops close to a hot solid surface can be prevented from making contact by the vapour generation in between them. This so-called Leidenfrost effect occurs at a minimal plate temperature which is referred to as the Leidenfrost temperature. In spray cooling, were one uses impacting drops to cool down the hot solid, this effect is very undesirable: the vapour layer forms an isolating layer and prevents effective heat transfer between the drop and the solid. We study this phenomenon by impacting a single liquid nitrogen drop on a smooth sapphire prism using high-speed frustrated total internal reflection imaging. In these cryogenic conditions, the prism behaves as a perfect thermal conductor, while its transparency enables us to study the contact behaviour during the impact and the spreading phase of the drop. By varying the prism temperature and impact velocity of the drops we obtain a phase diagram of the impact characteristics. Using the Stokes number for the vapour flow, we find good agreement with previous studies for non-cryogenic liquids. The phase diagram is then compared with a second type of experiment in which a stream of drops cools the prism over time. The results of the two different type of measurements agree well, from which we conclude that the cooling power of a drop is strongly related to the wetting behaviour of the impacting drops. Finally, by comparing the wetted area with the contact line length we show that heat transfer in contact and transition boiling is dominated by conduction rather than evaporation.