English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The role of acceleration and jerk in perception of above-threshold surge motion

MPS-Authors
/persons/resource/persons83881

de Winkel,  K
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84229

Soyka,  F
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

de Winkel, K., Soyka, F., & Bülthoff, H. (2020). The role of acceleration and jerk in perception of above-threshold surge motion. Experimental Brain Research, 238(3), 699-711. doi:10.1007/s00221-020-05745-7.


Cite as: http://hdl.handle.net/21.11116/0000-0005-A904-8
Abstract
Inertial motions may be defined in terms of acceleration and jerk, the time-derivative of acceleration. We investigated the relative contributions of these characteristics to the perceived intensity of motions. Participants were seated on a high-fidelity motion platform, and presented with 25 above-threshold 1 s forward (surge) motions that had acceleration values ranging between 0.5 and 2.5 [Formula: see text] and jerks between 20 and 60 [Formula: see text], in five steps each. Participants performed two tasks: a magnitude estimation task, where they provided subjective ratings of motion intensity for each motion, and a two-interval forced choice task, where they provided judgments on which motion of a pair was more intense, for all possible combinations of the above motion profiles. Analysis of the data shows that responses on both tasks may be explained by a single model, and that this model should include acceleration only. The finding that perceived motion intensity depends on acceleration only appears inconsistent with previous findings. We show that this discrepancy can be explained by considering the frequency content of the motions, and demonstrate that a linear time-invariant systems model of the otoliths and subsequent processing can account for the present data as well as for previous findings.