Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

NADA-FLD: a general relativistic, multidimensional neutrino-hydrodynamics code employing flux-limited diffusion

MPG-Autoren
/persons/resource/persons245449

Rahman,  N.
Stellar Astrophysics, MPI for Astrophysics, Max Planck Society;

/persons/resource/persons4638

Janka,  H.-T.
Stellar Astrophysics, MPI for Astrophysics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rahman, N., Just, O., & Janka, H.-T. (2019). NADA-FLD: a general relativistic, multidimensional neutrino-hydrodynamics code employing flux-limited diffusion. Monthly Notices of the Royal Astronomical Society, 490(3), 3545-3572. doi:10.1093/mnras/stz2791.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-B64C-9
Zusammenfassung
We present the new code NADA-FLD to solve multidimensional neutrino-hydrodynamics in full general relativity (GR) in spherical polar coordinates. The energy-dependent neutrino transport assumes the flux-limited diffusion approximation and evolves the neutrino energy densities measured in the frame comoving with the fluid. Operator splitting is used to avoid multidimensional coupling of grid cells in implicit integration steps involving matrix inversions. Terms describing lateral diffusion and advection are integrated explicitly using the Allen–Cheng or the Runge–Kutta–Legendre method, which remain stable even in the optically thin regime. We discuss several toy-model problems in one and two dimensions to test the basic functionality and individual components of the transport scheme. We also perform fully dynamic core-collapse supernova (CCSN) simulations in spherical symmetry. For a Newtonian model, we find good agreement with the M1 code ALCAR, and for a GR model, we reproduce the main effects of GR in CCSNe already found by previous works.