Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Possible absence of trimeron correlations above the Verwey temperature in Fe3O4

MPG-Autoren
/persons/resource/persons126701

Komarek,  A. C.
Alexander Komarek, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons180435

Guo,  H.
Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Elnaggar, H., Wang, R., Lafuerza, S., Paris, E., Komarek, A. C., Guo, H., et al. (2020). Possible absence of trimeron correlations above the Verwey temperature in Fe3O4. Physical Review B, 101(8): 085107, pp. 1-5. doi:10.1103/PhysRevB.101.085107.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-BA39-A
Zusammenfassung
The origin of the metal to insulator transition in Fe3O4 remains a challenge due to the complexity of the system: it is a mixed valent, strongly correlated system where many interactions such as Jahn-Teller distortion, exchange, and phonons are very close in energetics. A recent interpretation of the Verwey transition as an ordering of a three-site magnetic polaron, the trimeron, has been put forward. Here we investigate the existence of the trimeron correlations in the high-temperature phase of Fe3O4 using high-resolution iron 2p3d resonant inelastic scattering magnetic linear dichroism. Guided by theoretical simulations, we reveal that the polarization dependence of the low-energy spin-orbital excitations is incompatible with tetragonal Jahn-Teller trimeron-type distortion. We conclude that the lowest-energy state of the high-temperature phase of Fe3O4 arises from an intricate interplay between trigonal crystal-field, exchange, and spin-orbit interactions.