Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Tissue bridges predict recovery after traumatic and ischemic thoracic spinal cord injury


Freund,  Patrick
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Publisher version), 671KB

Supplementary Material (public)
There is no public supplementary material available

Pfyffer, D., Huber, E., Sutter, R., Curt, A., & Freund, P. (2019). Tissue bridges predict recovery after traumatic and ischemic thoracic spinal cord injury. Neurology, 93(16), e1550-e1560. doi:10.1212/WNL.0000000000008318.

Cite as: https://hdl.handle.net/21.11116/0000-0005-BB20-4
Objective To investigate the spatiotemporal evolution and predictive properties of intramedullary damage and midsagittal tissue bridges at the epicenter of a thoracic spinal cord injury (SCI) using MRI.

Methods We retrospectively assessed midsagittal T2-weighted scans from 25 patients with thoracic SCI (14 traumatic, 11 ischemic) at 1 month post-SCI. In 12 patients with SCI, linear mixed-effects models on serial MRI explored temporal trajectories of quantifiable lesion markers (area, length, and width) and tissue bridges. Using partial correlation analysis, we assessed associations between structural lesion characteristics at 1 month post-SCI and recovery at 1 year postinjury, adjusting for baseline clinical status, age, and sex.

Results Lesion area decreased by 5.68 mm2 (p = 0.005), lesion length by 2.14 mm (p = 0.004), and lesion width by 0.13 mm (p = 0.004) per month. Width of tissue bridges increased by 0.06 mm (p = 0.019) per month, being similar in traumatic and ischemic SCI (p = 0.576). Smaller lesion area, length, width, and wider tissue bridges at 1 month post-SCI predicted better recovery at 1-year follow-up.

Conclusions Over time, the immediate area of cord damage shrunk while the cystic cavity became demarcated. Adjacent to the cyst, midsagittal tissue bridges became visible. The width of tissue bridges at 1 month post-SCI predicted recovery at 1 year follow-up. Measures of lesion area and tissue bridges early after traumatic and ischemic thoracic SCI therefore allow characterizing the evolution of focal cord damage and are predictive of recovery in thoracic SCI. Thus, lesion extent and tissue bridges hold potential to improve diagnosis and patient stratification in interventional trials.