Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Modeling the gravitational wave signature of neutron star black hole coalescences: PhenomNSBH

MPG-Autoren
/persons/resource/persons209079

Khan,  Sebastian
Binary Merger Observations and Numerical Relativity, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2002.08383.pdf
(Preprint), 902KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Thompson, J. E., Fauchon-Jones, E., Khan, S., Nitoglia, E., Pannarale, F., Dietrich, T., et al. (2020). Modeling the gravitational wave signature of neutron star black hole coalescences: PhenomNSBH. Physical Review D, 101: 124059. doi:10.1103/PhysRevD.101.124059.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-BC73-6
Zusammenfassung
Accurate gravitational-wave (GW) signal models exist for black-hole binary
(BBH) and neutron-star binary (BNS) systems, which are consistent with all of
the published GW observations to date. Detections of a third class of
compact-binary systems, neutron-star-black-hole (NSBH) binaries, have not yet
been confirmed, but are eagerly awaited in the near future. For NSBH systems,
GW models do not exist across the viable parameter space of signals. In this
work we present the frequency-domain phenomenological model, PhenomNSBH, for
GWs produced by NSBH systems with mass ratios from equal-mass up to 15, spin on
the black hole up to a dimensionless spin of $|\chi|=0.5$, and tidal
deformabilities ranging from 0 (the BBH limit) to 5000. We extend previous work
on a phenomenological amplitude model for NSBH systems to produce an amplitude
model that is parameterized by a single tidal deformability parameter. This
amplitude model is combined with an analytic phase model describing tidal
corrections. The resulting approximant is accurate enough to be used to measure
the properties of NSBH systems for signal-to-noise ratios (SNRs) up to 50, and
is compared to publicly-available NSBH numerical-relativity simulations and
hybrid waveforms constructed from numerical-relativity simulations and tidal
inspiral approximants. For most signals observed by second-generation
ground-based detectors within this SNR limit, it will be difficult to use the
GW signal alone to distinguish single NSBH systems from either BNSs or BBHs,
and therefore to unambiguously identify an NSBH system.