Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Quantifying convective aggregation using the tropical moist margin's length

MPG-Autoren

Leutwyler,  David
Precipitating Convection, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons226395

Windmiller,  Julia
Precipitating Convection, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

Externe Ressourcen

https://github.com/tbeucler/2019_WMI
(Ergänzendes Material)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2020MS002092.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Beucler, T., Leutwyler, D., & Windmiller, J. (2020). Quantifying convective aggregation using the tropical moist margin's length. Journal of Advances in Modeling Earth Systems, e2020MS002092, pp. acc. article online. doi:10.1029/2020MS002092.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-EC6A-A
Zusammenfassung
On small scales, the tropical atmosphere tends to be either moist or very dry. This denes two
states that, on large scales, are separated by a sharp margin, well identied by the antimode of the bimodal
tropical column water vapor distribution. Despite recent progress in understanding physical processes
governing the spatiotemporal variability of tropical water vapor, the behavior of this margin remains elusive,
and we lack a simple framework to understand the bimodality of tropical water vapor in observations.
Motivated by the success of coarsening theory in explaining bimodal distributions, we leverage its
methodology to relate the moisture eld's spatial organization to its time evolution. This results in a new
diagnostic framework for the bimodality of tropical water vapor, from which we argue that the length of
the margin separating moist from dry regions should evolve toward a minimum in equilibrium. As the
spatial organization of moisture is closely related to the organization of tropical convection, we hereby
introduce a new convective organization index (BLW) measuring the ratio of the margin's length to the
circumference of a welldened equilibrium shape. Using BLW, we assess the evolution of selfaggregation
in idealized cloudresolving simulations of radiativeconvective equilibrium and contrast it to the time
evolution of the Atlantic Intertropical Convergence Zone (ITCZ) in the ERA5 meteorological reanalysis
product. We nd that BLW successfully captures aspects of convective organization ignored by more
traditional metrics, while offering a new perspective on the seasonal cycle of convective organization in the
Atlantic ITCZ