English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Short-term modulation of the lesioned language network

MPS-Authors
/persons/resource/persons185449

Hartwigsen,  Gesa
Lise Meitner Research Group Cognition and Plasticity, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Charpentier,  Louise
Lise Meitner Research Group Cognition and Plasticity, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19903

Obrig,  Hellmuth
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Hartwigsen_2020.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Hartwigsen, G., Stockert, A., Charpentier, L., Wawrzyniak, M., Klingbeil, J., Wrede, K., et al. (2020). Short-term modulation of the lesioned language network. eLife, 9: e54277. doi:10.7554/eLife.54277.


Cite as: https://hdl.handle.net/21.11116/0000-0005-C36F-3
Abstract
Language is sustained by large-scale networks in the human brain. Stroke often severely affects function and network dynamics. However, the adaptive potential of the brain to compensate for lesions is poorly understood. A key question is whether upregulation of the right hemisphere is adaptive for language recovery. Targeting the potential for short-term reorganization in the lesioned brain, we applied 'virtual lesions' over left anterior or posterior inferior frontal gyrus (IFG) in post-stroke patients with left temporo-parietal lesions prior to functional neuroimaging. Perturbation of the posterior IFG selectively delayed phonological decisions and decreased phonological activity. The individual response delay was correlated with the upregulation of the lesion homologue, likely reflecting compensation. Moreover, stronger individual tract integrity of the right superior longitudinal fascicle was associated with lesser disruption. Our results provide evidence for functional and structural underpinnings of plasticity in the lesioned language network, and a compensatory role of the right hemisphere.