Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Spatial metabolomics of in situ host–microbe interactions at the micrometre scale

MPG-Autoren
/persons/resource/persons210396

Geier,  Benedikt
Department of Symbiosis, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons256757

Sogin,  Emilia
Department of Symbiosis, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210611

Michellod,  Dolma
IMPRS MarMic, Max Planck Institute for Marine Microbiology, Max Planck Society;
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons257579

Janda,  Moritz
Department of Symbiosis, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210343

Dubilier,  Nicole
Department of Symbiosis, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210577

Liebeke,  Manuel
Department of Symbiosis, Max Planck Institute for Marine Microbiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Geier, B., Sogin, E., Michellod, D., Janda, M., Kompauer, M., Spengler, B., et al. (2020). Spatial metabolomics of in situ host–microbe interactions at the micrometre scale. Nature Microbiology.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-C309-5
Zusammenfassung
Spatial metabolomics describes the location and chemistry of small molecules involved in metabolic phenotypes, defence molecules and chemical interactions in natural communities. Most current techniques are unable to spatially link the genotype and metabolic phenotype of microorganisms in situ at a scale relevant to microbial interactions. Here, we present a spatial metabolomics pipeline (metaFISH) that combines fluorescence in situ hybridization (FISH) microscopy and high-resolution atmospheric-pressure matrix-assisted laser desorption/ionization mass spectrometry to image host–microbe symbioses and their metabolic interactions. The metaFISH pipeline aligns and integrates metabolite and fluorescent images at the micrometre scale to provide a spatial assignment of host and symbiont metabolites on the same tissue section. To illustrate the advantages of metaFISH, we mapped the spatial metabolome of a deep-sea mussel and its intracellular symbiotic bacteria at the scale of individual epithelial host cells. Our analytical pipeline revealed metabolic adaptations of the epithelial cells to the intracellular symbionts and variation in metabolic phenotypes within a single symbiont 16S rRNA phylotype, and enabled the discovery of specialized metabolites from the host–microbe interface. metaFISH provides a culture-independent approach to link metabolic phenotypes to community members in situ and is a powerful tool for microbiologists across fields.