English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Evidence for metastable photo-induced superconductivity in K3C60

MPS-Authors
/persons/resource/persons245734

Budden,  M.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons201275

Gebert,  T.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons224588

Buzzi,  M.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons224134

Jotzu,  G.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons245736

Wang,  E.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons227397

Matsuyama,  T.
Ultrafast Electronics, Scientific Service Units, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons141017

Meier,  G.
Ultrafast Electronics, Scientific Service Units, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133815

Laplace,  Y.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133811

Cavalleri,  A.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Department of Physics, Clarendon Laboratory, University of Oxford;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2002.12835.pdf
(Preprint), 6MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Budden, M., Gebert, T., Buzzi, M., Jotzu, G., Wang, E., Matsuyama, T., et al. (2020). Evidence for metastable photo-induced superconductivity in K3C60.


Cite as: https://hdl.handle.net/21.11116/0000-0005-C404-9
Abstract
Far and mid infrared optical pulses have been shown to induce non-equilibrium unconventional orders in complex materials, including photo-induced ferroelectricity in quantum paraelectrics, magnetic polarization in antiferromagnets and transient superconducting correlations in the normal state of cuprates and organic conductors. In the case of non-equilibrium superconductivity, femtosecond drives have generally resulted in electronic properties that disappear immediately after excitation, evidencing a state that lacks intrinsic rigidity. Here, we make use of a new optical device to drive metallic K3C60 with mid-infrared pulses of tunable duration, ranging between one picosecond and one nanosecond. The same superconducting-like optical properties observed over short time windows for femtosecond excitation are shown here to become metastable under sustained optical driving, with lifetimes in excess of ten nanoseconds. Direct electrical probing becomes possible at these timescales, yielding a vanishingly small resistance. Such a colossal positive photo-conductivity is highly unusual for a metal and, when taken together with the transient optical conductivities, it is rather suggestive of metastable light-induced superconductivity.