English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Braginskii viscosity on an unstructured, moving mesh accelerated with super-time-stepping

MPS-Authors
/persons/resource/persons4732

Pakmor,  Rüdiger
Stellar Astrophysics, MPI for Astrophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Berlok, T., Pakmor, R., & Pfrommer, C. (2019). Braginskii viscosity on an unstructured, moving mesh accelerated with super-time-stepping. Monthly Notices of the Royal Astronomical Society, 491(2), 2919-2938. doi:10.1093/mnras/stz3115.


Cite as: https://hdl.handle.net/21.11116/0000-0005-C447-E
Abstract
We present a method for efficiently modelling Braginskii viscosity on an unstructured, moving mesh. Braginskii viscosity, i.e. anisotropic transport of momentum with respect to the direction of the magnetic field, is thought to be of prime importance for studies of the weakly collisional plasma that comprises the intracluster medium (ICM) of galaxy clusters. Here, anisotropic transport of heat and momentum has been shown to have profound consequences for the stability properties of the ICM. Our new method for modelling Braginskii viscosity has been implemented in the moving mesh code arepo. We present a number of examples that serve to test the implementation and illustrate the modified dynamics found when including Braginskii viscosity in simulations. These include (but are not limited to) damping of fast magnetosonic waves, interruption of linearly polarized Alfvén waves by the firehose instability, and the inhibition of the Kelvin–Helmholtz instability by Braginskii viscosity. An explicit update of Braginskii viscosity is associated with a severe time-step constraint that scales with (Δx)2, where Δx is the grid size. In our implementation, this restrictive time-step constraint is alleviated by employing second-order accurate Runge–Kutta–Legendre super-time-stepping. We envision including Braginskii viscosity in future large-scale simulations of Kelvin–Helmholtz unstable cold fronts in cluster mergers and AGN-generated bubbles in central cluster regions.