English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Forming Super Star Clusters in the Central Starburst of NGC 253

MPS-Authors

Leroy,  Adam K.
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Bolatto,  Alberto D.
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Ostriker,  Eve C.
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Walter,  Fabian
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Gorski,  Mark
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Ginsburg,  Adam
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Krieger,  Nico
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Levy,  Rebecca C.
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Meier,  David S.
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Mills,  Elisabeth
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Ott,  Jürgen
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Rosolowsky,  Erik
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Thompson,  Todd A.
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Veilleux,  Sylvain
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Zschaechner,  Laura K.
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Leroy, A. K., Bolatto, A. D., Ostriker, E. C., Walter, F., Gorski, M., Ginsburg, A., et al. (2018). Forming Super Star Clusters in the Central Starburst of NGC 253. The Astrophysical Journal, 869.


Cite as: https://hdl.handle.net/21.11116/0000-0005-CC94-E
Abstract
NGC 253 hosts the nearest nuclear starburst. Previous observations show a region rich in molecular gas, with dense clouds associated with recent star formation. We used the Atacama Large Submillimeter/Millimeter Array (ALMA) to image the 350 GHz dust continuum and molecular line emission from this region at 2 pc resolution. Our observations reveal ̃14 bright, compact (̃2-3 pc FWHM) knots of dust emission. Most of these sources are likely to be forming super star clusters (SSCs) based on their inferred dynamical and gas masses, association with 36 GHz radio continuum emission, and coincidence with line emission tracing dense, excited gas. One source coincides with a known SSC, but the rest remain invisible in Hubble near-infrared (IR) imaging. Our observations imply that gas still constitutes a large fraction of the overall mass in these sources. Their high brightness temperature at 350 GHz also implies a large optical depth near the peak of the IR spectral energy distribution. As a result, these sources may have large IR photospheres, and the IR radiation force likely exceeds L/c. Still, their moderate observed velocity dispersions suggest that feedback from radiation, winds, and supernovae are not yet disrupting most sources. This mode of star formation appears to produce a large fraction of stars in the burst. We argue for a scenario in which this phase lasts ̃1 Myr, after which the clusters shed their natal cocoons but continue to produce ionizing photons. The strong feedback that drives the observed cold gas and X-ray outflows likely occurs after the clusters emerge from this early phase.