Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Multicomponent Kinematics in a Massive Filamentary Infrared Dark Cloud

MPG-Autoren

Sokolov,  Vlas
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Wang,  Ke
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Pineda,  Jaime E.
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Caselli,  Paola
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Henshaw,  Jonathan D.
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Barnes,  Ashley T.
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Tan,  Jonathan C.
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Fontani,  Francesco
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Jiménez-Serra,  Izaskun
Max Planck Institute for Astronomy, Max Planck Society and Cooperation Partners;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sokolov, V., Wang, K., Pineda, J. E., Caselli, P., Henshaw, J. D., Barnes, A. T., et al. (2019). Multicomponent Kinematics in a Massive Filamentary Infrared Dark Cloud. The Astrophysical Journal, 872.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-D24A-B
Zusammenfassung
To probe the initial conditions for high-mass star and cluster formation, we investigate the properties of dense filaments within the infrared dark cloud (IRDC) G035.39-00.33 (G035.39) in a combined Very Large Array and Green Bank Telescope mosaic tracing the NH3 (1, 1) and (2, 2) emission down to 0.08 pc scales. Using agglomerative hierarchical clustering on multiple line-of-sight velocity component fitting results, we identify seven extended velocity-coherent components in our data, likely representing spatially coherent physical structures, some exhibiting complex gas motions. The velocity gradient magnitude distribution peaks at its mode of 0.35 and has a long tail extending into higher values of 1.5-2 , and it is generally consistent with those found toward the same cloud in other molecular tracers and with the values found toward nearby low-mass dense cloud cores at the same scales. Contrary to observational and theoretical expectations, we find the nonthermal ammonia line widths to be systematically narrower (by about 20%) than those of N2H+ (1-0) line transition observed with similar resolution. If the observed ordered velocity gradients represent the core envelope solid-body rotation, we estimate the specific angular momentum to be about 2 1021 cm2 s-1, similar to the low-mass star-forming cores. Together with the previous finding of subsonic motions in G035.39, our results demonstrate high levels of similarity between kinematics of a high-mass star-forming IRDC and the low-mass star formation regime.