Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Fast Neutrino Flavor Conversion: Collective Motion vs. Decoherence

MPG-Autoren

Capozzi,  Francesco
Max Planck Institute for Physics, Max Planck Society and Cooperation Partners;

Raffelt,  Georg
Max Planck Institute for Physics, Max Planck Society and Cooperation Partners;

Stirner,  Tobias
Max Planck Institute for Physics, Max Planck Society and Cooperation Partners;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Capozzi, F., Raffelt, G., & Stirner, T. (2019). Fast Neutrino Flavor Conversion: Collective Motion vs. Decoherence. Journal of Cosmology and Astroparticle Physics, 09, 002. Retrieved from https://publications.mppmu.mpg.de/?action=search&mpi=MPP-2019-120.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-D757-7
Zusammenfassung
In an interacting neutrino gas, flavor coherence becomes dynamical and can propagate as a collective mode. In particular, tachyonic instabilities can appear, leading to "fast flavor conversion" that is independent of neutrino masses and mixing angles. On the other hand, without neutrino-neutrino interaction, a prepared wave packet of flavor coherence simply dissipates by kinematical decoherence of infinitely many non-collective modes. We reexamine the dispersion relation for fast flavor modes and show that for any wavenumber,there exists a continuum of non-collective modes besides a few discrete collective ones. So for any initial wave packet, both decoherence and collective motion occurs, although the latter typically dominates for a sufficiently dense gas. We derive explicit eigenfunctions for both collective and non-collective modes. If the angular mode distribution of electron-lepton number crosses between positive and negative values, two non-collective modes can merge to become a tachyonic collective mode. We explicitly calculate the interaction strength for this critical point. As a corollary we find that a single crossing always leads to a tachyonic instability. For an even number of crossings, no instability needs to occur.