English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) - Part 2: Development and evaluation

MPS-Authors
/persons/resource/persons204594

Burgard,  Clara
Max Planck Research Group The Sea Ice in the Earth System, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37281

Notz,  Dirk
Max Planck Research Group The Sea Ice in the Earth System, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

tc-14-2387-2020.pdf
(Publisher version), 11MB

Supplementary Material (public)

README_Burgardetal20b.txt
(Supplementary material), 396B

Citation

Burgard, C., Notz, D., Pedersen, L. T., & Tonboe, R. T. (2020). The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) - Part 2: Development and evaluation. The Cryosphere, 14, 2387-2407. doi:10.5194/tc-14-2387-2020.


Cite as: https://hdl.handle.net/21.11116/0000-0005-D494-4
Abstract
The observational uncertainty in sea-ice-concentration estimates from remotely-sensed passive-microwave brightness temperatures is a challenge for reliable climate model evaluation and initialization. To address this challenge, we introduce a new tool: the Arctic Ocean Observation Operator (ARC3O). ARC3O allows us to simulate brightness temperatures at 6.9 GHz at vertical polarisation from standard output of an Earth System Model. We evaluate ARC3O by simulating brightness temperatures based on three assimilation runs of the MPI Earth System Model (MPI-ESM) assimilated with three different sea-ice concentration products. We then compare these three sets of simulated brightness temperatures to brightness temperatures measured by the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) from space. We find that they differ up to 10 K in the period between October and June, depending on the region and the assimilation run. However, we show that these discrepancies between simulated and observed brightness temperature can be mainly attributed to the underlying observational uncertainty in sea-ice concentration and, to a lesser extent, to the data assimilation process, rather than to biases in ARC3O itself. In summer, the discrepancies between simulated and observed brightness temperatures are larger than in winter and locally reach up to 20 K. This is caused by the very large observational uncertainty in summer sea-ice concentration but also by the melt-pond parametrization in MPI-ESM, which is not necessarily realistic. ARC3O is therefore capable to realistically translate the simulated Arctic Ocean climate state into one observable quantity for a more comprehensive climate model evaluation and initialization.