Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Topological Floquet engineering of twisted bilayer graphene

MPG-Autoren
/persons/resource/persons194600

Topp,  G.
International Max Planck Research School for Ultrafast Imaging & Structural Dynamics (IMPRS-UFAST), Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Theoretical Description of Pump-Probe Spectroscopies in Solids, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Jotzu,  G.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

McIver,  J. W.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Xian,  L.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Computational Quantum Physics (CCQ),The Flatiron Institute;

Sentef,  M. A.
Theoretical Description of Pump-Probe Spectroscopies in Solids, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevResearch.1.023031.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Topp, G., Jotzu, G., McIver, J. W., Xian, L., Rubio, A., & Sentef, M. A. (2019). Topological Floquet engineering of twisted bilayer graphene. Physical Review Research, 1(2): 023031. doi:10.1103/PhysRevResearch.1.023031.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-D885-1
Zusammenfassung
We investigate the topological properties of Floquet-engineered twisted bilayer graphene above the so-called magic angle driven by circularly polarized laser pulses. Employing a full Moiré-unit-cell tight-binding Hamiltonian based on first-principles electronic structure, we show that the band topology in the bilayer, at twisting angles above 1.05∘, essentially corresponds to the one of single-layer graphene. However, the ability to open topologically trivial gaps in this system by a bias voltage between the layers enables the full topological phase diagram to be explored, which is not possible in single-layer graphene. Circularly polarized light induces a transition to a topologically nontrivial Floquet band structure with the Berry curvature analogous to a Chern insulator. Importantly, the twisting allows for tuning electronic energy scales, which implies that the electronic bandwidth can be tailored to match realistic driving frequencies in the ultraviolet or midinfrared photon-energy regimes. This implies that Moiré superlattices are an ideal playground for combining twistronics, Floquet engineering, and strongly interacting regimes out of thermal equilibrium.