English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The use of nucleotide phosphorothioate diastereomers to define the structure of metal-nucleotide bound to GTP-AMP and ATP-AMP phosphotransferases from beef-heart mitochondria

MPS-Authors
/persons/resource/persons245951

Tomaselli,  Alfredo G.
Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons231976

Marquetant-Strasser,  Rainer
Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons98693

Goody,  Roger S.
Abt. III: Physikalische Biochemie, Max Planck Institute of Molecular Physiology, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Tomaselli, A. G., Marquetant-Strasser, R., Noda, L. H., & Goody, R. S. (1984). The use of nucleotide phosphorothioate diastereomers to define the structure of metal-nucleotide bound to GTP-AMP and ATP-AMP phosphotransferases from beef-heart mitochondria. European Journal of Biochemistry, 142(2), 287-289. doi:10.1111/j.1432-1033.1984.tb08283.x.


Cite as: https://hdl.handle.net/21.11116/0000-0005-D97A-E
Abstract
The diastereomers of adenosine 5'-O-[1-thio]triphosphate (ATP[alpha S]) and adenosine 5'-O-[2-thio]triphosphate (ATP[beta S]) were utilized to seek unambiguous assignment of Mg2+ coordination to ATP when bound to ATP-AMP phosphotransferase from beef heart mitochondria (AK2). Similarly, the diastereomers of guanosine 5'-O-[thio]triphosphate (GTP[alpha S]) and guanosine 5'-O-[2-thio]triphosphate (GTP[beta S]) were utilized to seek unambiguous assignment of Mg2+ coordination to GTP when bound to GTP-AMP phosphotransferase from beef heart mitochondria (AK3). Furthermore the diastereomers of guanosine 5'-O-[1-thio]diphosphate (GDP-[alpha S]) have been used to assign Mg2+ coordination to GDP when bound to AK3. The ratios (V for isomer Sp)/(V for isomer Rp) obtained in the presence of Mg2+ and Cd2+ are compared to those already published for ATP-AMP phosphotransferases from pig muscle (AK1) [Kalbitzer et al. (1983) Eur. J. Biochem. 133, 221-227] and from baker's yeast (AKy) [Tomasselli and Noda (1983) Eur. J. Biochem. 132, 109-115]. In all cases, coordination of Mg2+ to the beta-phosphate via the pro-R oxygen is present, as shown by reversal of specificity for the diastereomers of ATP [beta S] or GTP [beta S] respectively on changing the metal ion. In contrast, there is no reversal of specificity for the diastereomers of ATP [alpha S] or GTP[alpha S], or for GDP[alpha S] in the case of AK3 for the reverse reaction, indicating that there is no interaction of the metal with the alpha-phosphate group. The observed stereospecificity for the alpha-thiophosphate is consistent with the assumption of an interaction of the pro-R oxygen of the alpha-phosphate group with the enzyme.