English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Pharmacogenomics-Driven Prediction of Antidepressant Treatment Outcomes: A Machine-Learning Approach With Multi-trial Replication

MPS-Authors
/persons/resource/persons138194

Carrillo-Roa,  Tania
Dept. Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;

/persons/resource/persons80272

Binder,  Elisabeth B.
Dept. Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Athreya, A. P., Neavin, D., Carrillo-Roa, T., Skime, M., Biernacka, J., Frye, M. A., et al. (2019). Pharmacogenomics-Driven Prediction of Antidepressant Treatment Outcomes: A Machine-Learning Approach With Multi-trial Replication. Clinical Pharmacology & Therapeutics, 106(4), 855-865. doi:10.1002/cpt.1482.


Cite as: https://hdl.handle.net/21.11116/0000-0005-FC83-B
Abstract
We set out to determine whether machine learning-based algorithms that included functionally validated pharmacogenomic biomarkers joined with clinical measures could predict selective serotonin reuptake inhibitor (SSRI) remission/response in patients with major depressive disorder (MDD). We studied 1,030 white outpatients with MDD treated with citalopram/escitalopram in the Mayo Clinic Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS; n = 398), Sequenced Treatment Alternatives to Relieve Depression (STAR*D; n = 467), and International SSRI Pharmacogenomics Consortium (ISPC; n = 165) trials. A genomewide association study for PGRN-AMPS plasma metabolites associated with SSRI response (serotonin) and baseline MDD severity (kynurenine) identified single nucleotide polymorphisms (SNPs) in DEFB1, ERICH3, AHR, and TSPAN5 that we tested as predictors. Supervised machine-learning methods trained using SNPs and total baseline depression scores predicted remission and response at 8 weeks with area under the receiver operating curve (AUC) > 0.7 (P < 0.04) in PGRN-AMPS patients, with comparable prediction accuracies > 69% (P <= 0.07) in STAR*D and ISPC. These results demonstrate that machine learning can achieve accurate and, importantly, replicable prediction of SSRI therapy response using total baseline depression severity combined with pharmacogenomic biomarkers.