English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Magnetic electron collimation in three-dimensional semi-metals

MPS-Authors
/persons/resource/persons126702

König,  Markus
Markus König, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126541

Borrmann,  Horst
Horst Borrmann, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Huang, X., Putzke, C., Guo, C., Diaz, J., König, M., Borrmann, H., et al. (2020). Magnetic electron collimation in three-dimensional semi-metals. npj Quantum Materials, 5: 12, pp. 1-7. doi:10.1038/s41535-020-0214-8.


Cite as: https://hdl.handle.net/21.11116/0000-0005-DBDE-B
Abstract
While electrons moving perpendicular to a magnetic field are confined to cyclotron orbits, they can move freely parallel to the field. This simple fact leads to complex current flow in clean, low carrier density semi-metals, such as long-ranged current jets forming along the magnetic field when currents pass through point-like constrictions. Occurring accidentally at imperfect current injection contacts, the phenomenon of "current jetting" plagues the research of longitudinal magneto-resistance, which is particularly important in topological conductors. Here we demonstrate the controlled generation of tightly focused electron beams in a new class of micro-devices machined from crystals of the Dirac semi-metal Cd3As2. The current beams can be guided by tilting a magnetic field and their range tuned by the field strength. Finite element simulations quantitatively capture the voltage induced at faraway contacts when the beams are steered towards them, supporting the picture of controlled electron jets. These experiments demonstrate direct control over the highly non-local signal propagation unique to 3D semi-metals in the current jetting regime, and may lead to applications akin to electron optics in free space. © 2020, The Author(s).