English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The MSL complex: X chromsome and beyond

MPS-Authors
/persons/resource/persons198888

Akhtar,  Asifa
Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Laverty, C., Lucci, J., & Akhtar, A. (2010). The MSL complex: X chromsome and beyond. Current Opinion in Genetics & Development, 20, 171-178. doi:10.1016/j.gde.2010.01.007.


Cite as: http://hdl.handle.net/21.11116/0000-0005-E138-E
Abstract
X chromosomal regulation is a process that presents systematic problems of chromosome recognition and coordinated gene regulation. In Drosophila males, the ribonucleoprotein Male-Specific Lethal (MSL) complex plays an important role in hyperactivation of the X-linked genes to equalize gene dosage differences between the sexes. It appears that X chromosome recognition by the MSL complex may be mediated through a combination of sequence-specificity and transcriptional activities. The resulting transcriptional up-regulation also seems to involve several mechanisms, encompassing both gene-specific and chromosome-wide approaches. Interestingly the histone H4 lysine 16 specific MOF histone acetyl transferase, a key MSL member that hyper-acetylates the male X chromosome, is also involved in gene regulation beyond dosage compensation. A comparison of Drosophila and mammalian systems reveals intriguing parallels in MOF behavior, and highlights the multidisciplinary nature of this enzyme.