English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONS
  This item is discarded!DetailsSummary

Discarded

Paper

Molecular Mechanism of the pH-Dependent Calcium Affinity in Langerin

MPS-Authors
/persons/resource/persons220662

Zhang,  Heng-Xi
Christoph Rademacher, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121753

Rademacher,  Christoph
Christoph Rademacher, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(No access)

Supplementary Material (public)
There is no public supplementary material available
Citation

Joswig, J.-O., Anders, J., Zhang, H.-X., Rademacher, C., & Keller, B. G. (2020). Molecular Mechanism of the pH-Dependent Calcium Affinity in Langerin. bioRxiv, 986851. doi:10.1101/2020.03.11.986851.


Abstract
The C-type lectin receptor langerin plays a vital role in the mammalian defense against invading pathogens. Its function hinges on the affinity to its co-factor Ca2+ which in turn is regulated by the pH. We studied the structural consequences of pro-tonating the allosteric pH-sensor histidine H294 by molecular dynamics simulations (total simulation time: about 120 μs) and Markov models. We discovered a mechanism in which the signal that the pH has dropped is transferred to the Ca2+-binding site without transferring the initial proton. Instead, protonation of H294 unlocks a conformation in which a protonated lysine side-chain forms a hydrogen bond with a Ca2+-coordinating aspartic acid. This destabilizes Ca2+ in the binding pocket, which we probed by steered molecular dynamics. After Ca2+-release, the proton is likely transferred to the aspartic acid and stabilized by a dyad with a nearby glutamic acid, triggering a conformational transition and thus preventing Ca2+-rebinding.