English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Preprint

Inference of a mesoscopic population model from population spike trains

MPS-Authors

René,  Alexandre
Max Planck Research Group Neural Systems Analysis, Center of Advanced European Studies and Research (caesar), Max Planck Society;

/persons/resource/persons84066

Macke,  Jakob H
Max Planck Research Group Neural Systems Analysis, Center of Advanced European Studies and Research (caesar), Max Planck Society;

External Resource

https://arxiv.org/abs/1910.01618
(Supplementary material)

Fulltext (public)

1910.01618.pdf
(Preprint), 7MB

Supplementary Material (public)
There is no public supplementary material available
Citation

René, A., Longtin, A., & Macke, J. H. (2019). Inference of a mesoscopic population model from population spike trains. arXiv, q-bio, arXiv:1910.01618.


Cite as: http://hdl.handle.net/21.11116/0000-0005-E60C-B
Abstract
To understand how rich dynamics emerge in neural populations, we require models exhibiting a wide range of activity patterns while remaining interpretable in terms of connectivity and single-neuron dynamics. However, it has been challenging to fit such mechanistic spiking networks at the single neuron scale to empirical population data. To close this gap, we propose to fit such data at a meso scale, using a mechanistic but low-dimensional and hence statistically tractable model. The mesoscopic representation is obtained by approximating a population of neurons as multiple homogeneous `pools' of neurons, and modelling the dynamics of the aggregate population activity within each pool. We derive the likelihood of both single-neuron and connectivity parameters given this activity, which can then be used to either optimize parameters by gradient ascent on the log-likelihood, or to perform Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling. We illustrate this approach using a model of generalized integrate-and-fire neurons for which mesoscopic dynamics have been previously derived, and show that both single-neuron and connectivity parameters can be recovered from simulated data. In particular, our inference method extracts posterior correlations between model parameters, which define parameter subsets able to reproduce the data. We compute the Bayesian posterior for combinations of parameters using MCMC sampling and investigate how the approximations inherent to a mesoscopic population model impact the accuracy of the inferred single-neuron parameters.