English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Emerging chiral edge states from the confinement of a magnetic Weyl semimetal in Co3Sn2S2

MPS-Authors
/persons/resource/persons222409

Liu,  Enke
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons222411

Gayles,  Jacob
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons221626

Xu,  Qiunan
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  Claudia
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons179670

Sun,  Yan
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Muechler, L., Liu, E., Gayles, J., Xu, Q., Felser, C., & Sun, Y. (2020). Emerging chiral edge states from the confinement of a magnetic Weyl semimetal in Co3Sn2S2. Physical Review B, 101(11): 115106, pp. 1-6. doi:10.1103/PhysRevB.101.115106.


Cite as: https://hdl.handle.net/21.11116/0000-0005-E975-1
Abstract
The quantum anomalous Hall effect (QAHE) and magnetic Weyl semimetals (WSMs) are topological states induced by intrinsic magnetic moments and spin-orbit coupling. Their similarity suggests the possibility of achieving the QAHE by dimensional confinement of a magnetic WSM along one direction. In this paper, we investigate the emergence of the QAHE in the two-dimensional (2D) limit of magnetic WSMs due to finite-size effects in thin films and step edges. We demonstrate the feasibility of this approach with effective models and real materials. To this end, we have chosen the layered magnetic WSM Co3Sn2S2, which features a large anomalous Hall conductivity and anomalous Hall angle in its three-dimensional bulk as our material candidate. In the 2D limit of Co3Sn2S2, two QAHE states exist depending on the stoichiometry of the 2D layer. One is a semimetal with a Chern number of 6, and the other is an insulator with a Chern number of 3. The latter has a band gap of 0.05 eV, which is much larger than that in magnetically doped topological insulators. Our findings naturally explain the existence of chiral states in step edges of bulk Co3Sn2S2 which have been reported in a recent experiment at T = 4 K and present a realistic avenue to realize QAH states in thin films of magnetic WSMs.