English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Pinpointing nitrogen oxide emissions from space

MPS-Authors
/persons/resource/persons100850

Beirle,  Steffen
Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons246449

Borger,  Christian
Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100912

Dörner,  Steffen
Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons140374

Wang,  Yang
Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101349

Wagner,  Thomas
Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Beirle, S., Borger, C., Dörner, S., Li, A., Hu, Z., Liu, F., et al. (2019). Pinpointing nitrogen oxide emissions from space. Science Advances, 5(11): eaax9800. doi:10.1126/sciadv.aax9800.


Cite as: https://hdl.handle.net/21.11116/0000-0005-F44A-5
Abstract
Satellite observations of nitrogen dioxide (NO2) provide valuable information on the location and strength of NOx emissions, but spatial resolution is limited by horizontal transport and smearing of temporal averages due to changing wind fields. In this study, we map NOx emissions on high spatial resolution from TROPOMI observations of NO2 combined with wind fields based on the continuity equation. The divergence of horizontal fluxes proves to be highly sensitive for point sources like exhaust stacks. Thus, NOx emissions from individual power plants can be resolved and quantified even on top of considerably high urban pollution from the Saudi Arabian capital city Riyadh. This allows us to catalog NOx emissions from large point sources globally, as demonstrated for South Africa and Germany, with a detection limit of about 0.11 kg/s down to 0.03 kg/s for ideal conditions.