Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

High-Pressure Synthesis of Two Polymorphic HgMnO3 Phases and Distinct Magnetism from 2D to 3D

MPG-Autoren
/persons/resource/persons126666

Hu,  Zhiwei
Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126881

Tjeng,  Liu-Hao
Liu Hao Tjeng, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zhou, B., Qin, S., Ma, T., Ye, X., Guo, J., Yu, X., et al. (2020). High-Pressure Synthesis of Two Polymorphic HgMnO3 Phases and Distinct Magnetism from 2D to 3D. Inorganic Chemistry, 59, 3887-3893. doi:10.1021/acs.inorgchem.9b03551.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-EF63-F
Zusammenfassung
An ilmenite-like monoclinic phase of HgMnO3 with space group P21/c was prepared using high-pressure and high-temperature methods at 18 GPa and 1473 K. The MnO6 octahedra form a two-dimensional (2D) network in the bc plane, leading to a long-range antiferromagnetic ordering with a low Néel temperature of TN ∼32 K. As the synthesis pressure increases to 20 GPa, a new perovskite-like rhombohedral phase with space group R3¯ c was found to occur. The rhombohedral phase exhibits a three-dimensional (3D) network for the MnO6 octahedra, giving rise to an antiferromagnetic ordering at TN ∼60 K. X-ray absorption spectroscopy confirms the invariable Mn4+ charge state in these two polymorphic phases, in agreement with the Curie-Weiss and bond valence sum analysis. HgMnO3 provides an interesting example to study the magnetic properties from 2D to 3D by varying synthesis pressure. Copyright © 2020 American Chemical Society.