English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Orientation twisted homotopy field theories and twisted unoriented Dijkgraaf-Witten theory

MPS-Authors
/persons/resource/persons246436

Young,  Matthew Bruce
Max Planck Institute for Mathematics, Max Planck Society;

External Ressource
Fulltext (public)

1810.04612.pdf
(Preprint), 538KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Young, M. B. (2020). Orientation twisted homotopy field theories and twisted unoriented Dijkgraaf-Witten theory. Communications in Mathematical Physics, 374(3), 1645-1691. doi:10.1007/s00220-019-03478-5.


Cite as: http://hdl.handle.net/21.11116/0000-0005-F630-F
Abstract
Given a finite $\mathbb{Z}_2$-graded group $\hat{\mathsf{G}}$ with ungraded subgroup $\mathsf{G}$ and a twisted cocycle $\hat{\lambda} \in Z^n(B \hat{\mathsf{G}}; \mathsf{U}(1)_{\pi})$ which restricts to $\lambda \in Z^n(B \mathsf{G}; \mathsf{U}(1))$, we construct a lift of $\lambda$-twisted $\mathsf{G}$-Dijkgraaf--Witten theory to an unoriented topological quantum field theory. Our construction uses a new class of homotopy field theories, which we call orientation twisted. We also introduce an orientation twisted variant of the orbifold procedure, which produces an unoriented topological field theory from an orientation twisted $\mathsf{G}$-equivariant topological field theory.