Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Analysis of the co-translational assembly of the fungal fatty acid synthase (FAS)

MPG-Autoren
/persons/resource/persons78427

Mulinacci,  Barbara
Oesterhelt, Dieter / Membrane Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78840

Vollrath,  Ronnald
Oesterhelt, Dieter / Membrane Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78254

Konstantinidis,  Kosta
Oesterhelt, Dieter / Membrane Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78468

Oesterhelt,  Dieter
Oesterhelt, Dieter / Membrane Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78032

Grininger,  Martin
Oesterhelt, Dieter / Membrane Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Fischer, M., Joppe, M., Mulinacci, B., Vollrath, R., Konstantinidis, K., Koetter, P., et al. (2020). Analysis of the co-translational assembly of the fungal fatty acid synthase (FAS). SCIENTIFIC REPORTS, 10: 895. doi:10.1038/s41598-020-57418-8.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-F90D-5
Zusammenfassung
The yeast fatty acid synthase (FAS) is a barrel-shaped 2.6 MDa complex. Upon barrel-formation, two multidomain subunits, each more than 200kDa large, intertwine to form a heterododecameric complex that buries 170,000 angstrom (2) of protein surface. In spite of the rich knowledge about yeast FAS in structure and function, its assembly remained elusive until recently, when co-translational interaction of the beta -subunit with the nascent alpha -subunit was found to initiate assembly. Here, we characterize the co-translational assembly of yeast FAS at a molecular level. We show that the co-translationally formed interface is sensitive to subtle perturbations, so that the exchange of two amino acids located in the emerging interface can prevent assembly. On the other hand, assembly can also be initiated via the co-translational interaction of the subunits at other sites, which implies that this process is not strictly site or sequence specific. We further highlight additional steps in the biogenesis of yeast FAS, as the formation of a dimeric subunit that orchestrates complex formation and acts as platform for post-translational phosphopantetheinylation. The presented data supports the understanding of the recently discovered prevalence of eukaryotic complexes for co-translational assembly, and is valuable for further harnessing FAS in the biotechnological production of aliphatic compounds.