English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Shaping Giant Membrane Vesicles in 3D-Printed Protein Hydrogel Cages

MPS-Authors
/persons/resource/persons245072

Jia,  Haiyang
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons137778

Litschel,  Thomas
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons197087

Heymann,  Michael
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons215483

Eto,  Hiromune
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons127954

Franquelim,  Henri G.
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons15815

Schwille,  Petra
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

Fulltext (public)

smll.201906259.pdf
(Publisher version), 6MB

Supplementary Material (public)

smll201906259-sup-0001-suppmat.pdf
(Supplementary material), 2MB

Citation

Jia, H., Litschel, T., Heymann, M., Eto, H., Franquelim, H. G., & Schwille, P. (2020). Shaping Giant Membrane Vesicles in 3D-Printed Protein Hydrogel Cages. Small, 1906259. doi:10.1002/smll.201906259.


Cite as: http://hdl.handle.net/21.11116/0000-0005-F9A7-6
Abstract
Giant unilamellar phospholipid vesicles are attractive starting points for constructing minimal living cells from the bottom-up. Their membranes are compatible with many physiologically functional modules and act as selective barriers, while retaining a high morphological flexibility. However, their spherical shape renders them rather inappropriate to study phenomena that are based on distinct cell shape and polarity, such as cell division. Here, a microscale device based on 3D printed protein hydrogel is introduced to induce pH-stimulated reversible shape changes in trapped vesicles without compromising their free-standing membranes. Deformations of spheres to at least twice their aspect ratio, but also toward unusual quadratic or triangular shapes can be accomplished. Mechanical force induced by the cages to phase-separated membrane vesicles can lead to spontaneous shape deformations, from the recurrent formation of dumbbells with curved necks between domains to full budding of membrane domains as separate vesicles. Moreover, shape-tunable vesicles are particularly desirable when reconstituting geometry-sensitive protein networks, such as reaction-diffusion systems. In particular, vesicle shape changes allow to switch between different modes of self-organized protein oscillations within, and thus, to influence reaction networks directly by external mechanical cues.