English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Momentum-resolved superconducting energy gaps of Sr2RuO4 from quasiparticle interference imaging

MPS-Authors
/persons/resource/persons126742

Mackenzie,  Andrew P.
Andrew Mackenzie, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons246546

Davis,  J. C. Séamus
J. C. Séamus Davis, Max Planck Fellow, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sharma, R., Edkins, S. D., Wang, Z., Kostin, A., Sow, C., Maeno, Y., et al. (2020). Momentum-resolved superconducting energy gaps of Sr2RuO4 from quasiparticle interference imaging. Proceedings of the National Academy of Sciences of the United States of America, 117(10), 5222-5227. doi:10.1073/pnas.1916463117.


Cite as: http://hdl.handle.net/21.11116/0000-0005-FA74-F
Abstract
Sr2RuO4 has long been the focus of intense research interest because of conjectures that it is a correlated topological superconductor. It is the momentum space (k-space) structure of the superconducting energy gap Δi(k) on each band i that encodes its unknown superconducting order parameter. However, because the energy scales are so low, it has never been possible to directly measure the Δi(k) of Sr2RuO4. Here, we implement Bogoliubov quasiparticle interference (BQPI) imaging, a technique capable of high-precision measurement of multiband Δi(k). At T = 90 mK, we visualize a set of Bogoliubov scattering interference wavevectors qj : j = 1 − 5 consistent with eight gap nodes/minima that are all closely aligned to the (±1, ± 1) crystal lattice directions on both the α and β bands. Taking these observations in combination with other very recent advances in directional thermal conductivity [E. Hassinger et al., Phys. Rev. X 7, 011032 (2017)], temperature-dependent Knight shift [A. Pustogow et al., Nature 574, 72–75 (2019)], time-reversal symmetry conservation [S. Kashiwaya et al., Phys. Rev B, 100, 094530 (2019)], and theory [A. T. Rømer et al., Phys. Rev. Lett. 123, 247001 (2019); H. S. Roising, T. Scaffidi, F. Flicker, G. F. Lange, S. H. Simon, Phys. Rev. Res. 1, 033108 (2019); and O. Gingras, R. Nourafkan, A. S. Tremblay, M. Côté, Phys. Rev. Lett. 123, 217005 (2019)], the BQPI signature of Sr2RuO4 appears most consistent with Δi(k) having dx2−y2 (B1g) symmetry. © 2020 National Academy of Sciences. All rights reserved.