English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Using Boulder Tracks as a Tool to Understand the Bearing Capacity of Permanently Shadowed Regions of the Moon

MPS-Authors
/persons/resource/persons221946

Bickel,  Valentin Tertius
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sargeant, H. M., Bickel, V. T., Honniball, C. I., Martinez, S. N., Rogaski, A., Bell, S. K., et al. (2020). Using Boulder Tracks as a Tool to Understand the Bearing Capacity of Permanently Shadowed Regions of the Moon. Journal of Geophysical Research: Planets, 125(2): e2019JE006157. doi:10.1029/2019JE006157.


Cite as: http://hdl.handle.net/21.11116/0000-0006-476E-0
Abstract
Permanently shadowed regions (PSRs) are abundant at the lunar poles. They experience no direct sunlight and reach temperatures as low as 30 K. PSRs are of interest as evidence suggests that some may contain water ice (H2O/OH‐), which could provide a record of the evolution of volatiles in the inner solar system. This water ice is also a critical resource for life‐support systems and rocket propellant. A better understanding of mechanical properties of PSR regolith, such as its bearing capacity, will help optimize the design of future exploration rovers and landers. Thirteen boulder tracks were identified on the edge of, or inside, south polar lunar PSR enhanced imagery and used to estimate the strength of the PSR regolith at latitudes of 70° to 76° in sites with maximum annual temperatures of 65 to 210 K. PSR boulder track features are similar to those observed in highland, mare, and pyroclastic regions of the Moon, implying similar properties of the regolith. Measured features were used to estimate bearing capacity for PSR regolith at depths of ~0.28 to 4.68 m. Estimated bearing capacity values suggest that these PSRs may be somewhat stronger than highland and mare regions at depths of 0.28 to 1.00 m. Bearing capacity in these PSRs is statistically the same as those in other regions of the Moon at depths of 1.00 to 2.00 m. The results of this study can be used to infer bearing capacity as one measure for the trafficability of lower‐latitude PSRs of the type measured here.