English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Calibration of an airborne HOX instrument using the All Pressure Altitude based Calibrator for HOX Experimentation (APACHE)

MPS-Authors
/persons/resource/persons230380

Marno,  Daniel
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101066

Klimach,  Thomas
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101122

Martinez,  Monica
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons230528

Rudolf,  Markus
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101104

Lelieveld,  Jos
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100983

Harder,  Hartwig
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Marno, D., Ernest, C., Hens, K., Javed, U., Klimach, T., Martinez, M., et al. (2019). Calibration of an airborne HOX instrument using the All Pressure Altitude based Calibrator for HOX Experimentation (APACHE). Atmospheric Measurement Techniques Discussions, in review.


Cite as: https://hdl.handle.net/21.11116/0000-0006-00BC-6
Abstract
Laser induced fluorescence (LIF) is a widely used technique for both laboratory-based and ambient atmospheric chemistry measurements. However, LIF instruments require calibrations in order to translate instrument response into concentrations of chemical species. Calibration of LIF instruments measuring OH and HO2 (HOX), typically involves the photolysis of water vapor by 184.9 nm light thereby producing quantitative amounts of OH and HO2. For ground-based systems HOX instruments, this method of calibration is done at one pressure (typically ambient pressure) at the instrument inlet. However, airborne HOX instruments can experience varying cell pressures, internal residence times, temperatures, and humidity during flight. Therefore, replication of such variances when calibrating are essential to acquire the appropriate sensitivities. This requirement resulted in the development of the APACHE (All Pressure Altitude-based Calibrator for HOX Experimentation) chamber. It utilizes photolysis of water vapor, but has the additional ability to alter the pressure at the inlet of the HOX instrument thus relating instrument sensitivity to the external pressure ranges experienced during flight (275 to 1000 mbar). Measurements supported by COMSOL multiphysics and its computational fluid dynamics calculations revealed that, for all pressures explored in this study, APACHE is capable of initializing homogenous flow and maintain near uniform flow speeds across the internal cross-section of the chamber. This reduces the uncertainty regarding average exposure times across the mercury (Hg) UV ring lamp. Two different actinometrical approaches characterized the APACHE UV ring lamp flux as 6.3 x 1014 (± 0.9 x 1014) s-1 depending on pressure. Data presented in this study are the first direct calibrations, performed in a controlled environment using APACHE of an airborne HOX system instrument.