English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Real-time sensing of bioaerosols: Review and current perspectives

MPS-Authors
/persons/resource/persons101255

Schneider,  Johannes
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Huffman, J. A., Perring, A. E., Savage, N. J., Clot, B., Crouzy, B., Tummon, F., et al. (2019). Real-time sensing of bioaerosols: Review and current perspectives. Aerosol Science and Technology. doi:10.1080/02786826.2019.1664724.


Cite as: https://hdl.handle.net/21.11116/0000-0006-0A82-C
Abstract
Detection of bioaerosols, or primary biological aerosol particles (PBAPs), has become increasingly important for a wide variety of research communities and scientific questions. In particular, real-time (RT) techniques for autonomous, online detection and characterization of PBAP properties in both outdoor and indoor environments are becoming more commonplace and have opened avenues of research. With advances in technology, however, come challenges to standardize practices so that results are both reliable and comparable across technologies and users. Here, we present a critical review of major RT instrument classes that have been applied to PBAP research, especially with respect to environmental science, allergy monitoring, agriculture, public health, and national security. Eight major classes of RT techniques are covered, including the following: (i) fluorescence spectroscopy, (ii) elastic scattering, microscopy, and holography, (iii) Raman spectroscopy, (iv) mass spectrometry, (v) breakdown spectroscopy, (vi) remote sensing, (vii) microfluidic techniques, and (viii) paired aqueous techniques. For each class of technology we present technical limitations, misconceptions, and pitfalls, and also summarize best practices for operation, analysis, and reporting. The final section of the article presents pressing scientific questions and grand challenges for RT sensing of PBAP as well as recommendations for future work to encourage high-quality results and increased cross-community collaboration.