Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Zebrafish spinal cord repair is accompanied by transient tissue stiffening

MPG-Autoren
/persons/resource/persons247999

Abuhattum,  Shada
Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Max Planck Society;
Guck Division, Max Planck Institute for the Science of Light, Max Planck Society;
Biotechnology Center, Technische Universität Dresden, Dresden, Germany;

/persons/resource/persons241284

Guck,  Jochen
Guck Division, Max Planck Institute for the Science of Light, Max Planck Society;
Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Möllmert, S., Kharlamova, M. A., Hoche, T., Taubenberger, A. V., Abuhattum, S., Kuscha, V., et al. (2020). Zebrafish spinal cord repair is accompanied by transient tissue stiffening. Biophysical Journal, 118(2), 448-463. doi:10.1016/j.bpj.2019.10.044.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-0A64-F
Zusammenfassung
Severe injury to the mammalian spinal cord results in permanent loss of function due to the formation of a glial-fibrotic scar. Both the chemical composition and the mechanical properties of the scar tissue have been implicated to inhibit neuronal regrowth and functional recovery. By contrast, adult zebrafish are able to repair spinal cord tissue and restore motor function after complete spinal cord transection owing to a complex cellular response that includes neurogenesis and axon regrowth. The mechanical mechanisms contributing to successful spinal cord repair in adult zebrafish are, however, currently unknown. Here, we employ AFM-enabled nano-indentation to determine the spatial distributions of apparent elastic moduli of living spinal cord tissue sections obtained from uninjured zebrafish and at distinct time points after complete spinal cord transection. In uninjured specimens, spinal gray matter regions were stiffer than white matter regions. During regeneration after transection, the spinal cord tissues displayed a significant increase of the respective apparent elastic moduli that transiently obliterated the mechanical difference between the two types of matter, before returning to baseline values after completion of repair. Tissue stiffness correlated variably with cell number density, oligodendrocyte interconnectivity, axonal orientation, and vascularization. The presented work constitutes the first quantitative mapping of the spatio-temporal changes of spinal cord tissue stiffness in regenerating adult zebrafish and provides the tissue mechanical basis for future studies into the role of mechanosensing in spinal cord repair.