English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Linear scaling perturbative triples correction approximations for open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory [DLPNO-CCSD(T0/T)]

MPS-Authors
/persons/resource/persons216813

Guo,  Yang
Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society;
Qingdao Institute for Theoretical and Computational Sciences, Shandong University;

/persons/resource/persons216821

Liakos,  Dimitrios G.
Research Group Wennmohs, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons216802

Becker,  Ute
Research Group Wennmohs, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Guo, Y., Riplinger, C., Liakos, D. G., Becker, U., Saitow, M., & Neese, F. (2020). Linear scaling perturbative triples correction approximations for open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory [DLPNO-CCSD(T0/T)]. The Journal of Chemical Physics, 152(2): 024116. doi:10.1063/1.5127550.


Cite as: https://hdl.handle.net/21.11116/0000-0006-3D8E-7
Abstract
The coupled cluster method with single-, double-, and perturbative triple excitations [CCSD(T)] is considered to be one of the most reliable quantum chemistry theories. However, the steep scaling of CCSD(T) has limited its application to small or medium-sized systems for a long time. In our previous work, the linear scaling domain based local pair natural orbital CCSD variant (DLPNO-CCSD) has been developed for closed-shell and open-shell. However, it is known from extensive benchmark studies that triple-excitation contributions are important to reach chemical accuracy. In the present work, two linear scaling (T) approximations for open-shell DLPNO-CCSD are implemented and compared: (a) an algorithm based on the semicanonical approximation, in which off-diagonal Fock matrix elements in the occupied space are neglected [referred to as DLPNO-(T0)]; and (b) an improved algorithm in which the triples amplitudes are computed iteratively [referred to as DLPNO-(T)]. This work is based on the previous open-shell DLPNO-CCSD algorithm [M. Saitow et al., J. Chem. Phys. 146, 164105 (2017)] as well as the iterative (T) correction for closed-shell systems [Y. Guo et al., J. Chem. Phys. 148, 011101 (2018)]. Our results show that the new open-shell perturbative corrections, DLPNO-(T0/T), can predict accurate absolute and relative correlation energies relative to the canonical reference calculations with the same basis set. The absolute energies from DLPNO-(T) are significantly more accurate than those of DLPNO-(T0). The additional computational effort of DLPNO-(T) relative to DLPNO-(T0) is a factor of 4 on average. We report calculations on systems with more than 4000 basis functions.