Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Compact Ho:YLF-pumped ZnGeP2-based optical parametric amplifiers tunable in the molecular fingerprint regime

MPG-Autoren
/persons/resource/persons199425

Cheng,  S.
International Max Planck Research School for Ultrafast Imaging & Structural Dynamics (IMPRS-UFAST), Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Chatterjee,  G.
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Tellkamp,  F.
Machine Physics, Scientific Service Units, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Miller,  R. J. D.
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Departments of Chemistry and Physics, University of Toronto;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Cheng, S., Chatterjee, G., Tellkamp, F., Lang, T., Ruehl, A., Hartl, I., et al. (2020). Compact Ho:YLF-pumped ZnGeP2-based optical parametric amplifiers tunable in the molecular fingerprint regime. Optics Letters, 45(8), 2255-2258. doi:10.1364/OL.389535.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-0DCF-4
Zusammenfassung
We report on a compact mid-infrared laser architecture, comprising a chain of ZnGeP2-based optical parametric amplifiers (OPAs), which afford a higher energy yield (∼<60µJ at 1 kHz) compared to most conventional OPA gain media transparent in the 2–8-µm wavelength range. Specifically, our OPA scheme allows ready tunability in the molecular fingerprint regime and is tailored for strong-field excitation and coherent control of both stretch and bend (or torsional) vibrational modes in molecules. The OPAs are pumped and directly seeded (via supercontinuum generation) by a 2-µm, 3-ps Ho:YLF regenerative amplifier. The compressibility of the OPA output is demonstrated by a representative measurement of the near-Gaussian temporal profile of a dispersion-compensated 105-fs idler pulse at a central wavelength of 5.1 µm, corresponding to ∼6 optical cycles. Detailed numerical simulations closely corroborate the experimental measurements, providing a benchmark and a platform to further explore the parameter space for future design, optimization, and implementation of high-energy, ultrafast, mid-infrared laser schemes.