English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

On the mechanism of speed and altitude control in Drosophila melanogaster

MPS-Authors
/persons/resource/persons225896

Zanker,  JM
Former Department Information Processing in Insects, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zanker, J. (1988). On the mechanism of speed and altitude control in Drosophila melanogaster. Physiological Entomology, 13(3), 351-361. doi:10.1111/j.1365-3032.1988.tb00485.x.


Cite as: https://hdl.handle.net/21.11116/0000-0006-0E69-6
Abstract
The total power output of tethered flying Drosophila melanogaster in still air depends on translational velocity components of image flow on the eye, whereas the orientation of the average flight force in the midsagittal plane of the fly is widely independent of visual input (Götz, 1968). The fly does not seem to control the vertical and the horizontal force component independently. Freely flying flies nevertheless generate different ratios between lift and thrust, simply by changing the inclination of their body. By the combined adjustment of the body angle and the total power output a fly appears to be able to stabilize height and speed (David, 1985). Here a possible mechanism is proposed by which the appropriate torque about the transverse body axis could be generated. Translational pattern motion influences the posture of the abdomen and the plane of wing oscillation. Thus the position of the centre of gravity relative to the flight force vector is changed. When abdomen and stroke plane deviate from an equilibrium state, a lever is generated by which the force vector will rotate the fly about its transverse axis.