Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Automated structure discovery in atomic force microscopy


Schulz,  Fabian
Department of Applied Physics, Aalto University;
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available

Alldritt, B., Hapala, P., Oinonen, N., Urtev, F., Krejci, O., Canova, F. F., et al. (2020). Automated structure discovery in atomic force microscopy. Science Advances, 6(9): eaay6913. doi:10.1126/sciadv.aay6913.

Cite as: https://hdl.handle.net/21.11116/0000-0006-188E-0
Atomic force microscopy (AFM) with molecule-functionalized tips has emerged as the primary experimental technique for probing the atomic structure of organic molecules on surfaces. Most experiments have been limited to nearly planar aromatic molecules due to difficulties with interpretation of highly distorted AFM images originating from nonplanar molecules. Here, we develop a deep learning infrastructure that matches a set of AFM images with a unique descriptor characterizing the molecular configuration, allowing us to predict the molecular structure directly. We apply this methodology to resolve several distinct adsorption configurations of 1S-camphor on Cu(111) based on low-temperature AFM measurements. This approach will open the door to applying high-resolution AFM to a large variety of systems, for which routine atomic and chemical structural resolution on the level of individual objects/molecules would be a major breakthrough.