Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Visualizing the importance of oxide-metal phase transitions in the production of synthesis gas over Ni catalysts

MPG-Autoren
/persons/resource/persons247186

Sandoval Diaz,  Luis
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons200441

Plodinec,  Milivoj
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons188969

Ivanov,  Danail
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons188971

Hammud,  Adnan
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons227639

Nerl,  Hannah
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Max Planck Institute for Chemical Energy Conversion;

/persons/resource/persons41515

Lunkenbein,  Thomas
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1-s2.0-S2095495620301285-main.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sandoval Diaz, L., Plodinec, M., Ivanov, D., Poitel, S., Hammud, A., Nerl, H., et al. (2020). Visualizing the importance of oxide-metal phase transitions in the production of synthesis gas over Ni catalysts. Journal of Energy Chemistry, 50, 178-186. doi:10.1016/j.jechem.2020.03.013.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-4374-C
Zusammenfassung
Synthesis gas, composed of H2 and CO, is an important fuel which serves as feedstock for industrially relevant processes, such as methanol or ammonia synthesis. The efficiency of these reactions depends on the H2: CO ratio, which can be controlled by a careful choice of reactants and catalyst surface chemistry. Here, using a combination of environmental scanning electron microscopy (ESEM) and online mass spectrometry, direct visualization of the surface chemistry of a Ni catalyst during the production of synthesis gas was achieved for the first time. The insertion of a homebuilt quartz tube reactor in the modified ESEM chamber was key to success of the setup. The nature of chemical dynamics was revealed in the form of reversible oxide-metal phase transitions and surface transformations which occurred on the performing catalyst. The oxide-metal phase transitions were found to control the production of synthesis gas in the temperature regime between 700 and 900 °C in an atmosphere relevant for dry reforming of methane (DRM, CO2: CH4 =0.75). This was confirmed using high resolution transmission electron microscopy imaging, electron energy loss spectroscopy, thermal analysis, and C18O2 labelled experiments. Our dedicated operando approach of simultaneously studying the surface processes of a catalyst and its activity allowed to uncover how phase transitions can steer catalytic reactions.