English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Book Chapter

Functional properties of circuits, cellular populations, and areas

MPS-Authors
/persons/resource/persons141609

Fries,  Pascal       
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;
Fries Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

/persons/resource/persons141798

Singer,  Wolf       
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;
Singer Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

/persons/resource/persons274130

Vinck,  Martin       
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;
Vinck Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Harris, K. D., Groh, J. M., DiCarlo, J., Fries, P., Kaschube, M., Laurent, G., et al. (2019). Functional properties of circuits, cellular populations, and areas. In W. Singer, T. J. Seijnowski, & P. Rakic (Eds.), The neocortex (pp. 223-272). Cambridge: MIT Press.


Cite as: https://hdl.handle.net/21.11116/0000-0006-4245-2
Abstract
A central goal of systems neuroscience is to understand how the brain represents and processes information to guide behavior (broadly defined as encompassing perception, cognition, and observable outcomes of those mental states through action). These concepts have been central to research in this field for at least sixty years, and research efforts have taken a variety of approaches. At this Forum, our discussions focused on what is meant by “functional” and “inter-areal,” what new concepts have emerged over the last several decades, and how we need to update and refresh these concepts and approaches for the coming decade.

In this chapter, we consider some of the historical conceptual frameworks that have shaped consideration of neural coding and brain function, with an eye toward what aspects have held up well, what aspects need to be revised, and what new concepts may foster future work.

Conceptual frameworks need to be revised periodically lest they become counter­productive and actually blind us to the significance of novel discoveries. Take, for example, hippocampal place cells: their accidental discovery led to the generation of new conceptual frameworks linking phenomena (e.g., memory, spatial navigation, and sleep) that previously seemed disparate, revealing unimagined mechanistic connections. Progress in scientific understanding requires an iterative loop from experiment to model/theory and back. Without such periodic reassessment, fields of scientific inquiry risk becoming bogged down by the propagation of outdated frameworks, often across multiple generations of researchers. This not only limits the impact of the truly new and unexpected, it hinders the pace of progress.