Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Oxygen pressure dependence of the α-Fe2O3(0001) surface structure

MPG-Autoren
/persons/resource/persons22106

Shaikhutdinov,  Shamil K.
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22230

Weiss,  Werner
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Shaikhutdinov, S. K., & Weiss, W. (1999). Oxygen pressure dependence of the α-Fe2O3(0001) surface structure. Surface Science, 432(3), L627-L634. doi:10.1016/S0039-6028(99)00643-3.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-43B9-E
Zusammenfassung
The dependence of the α-Fe2O3(0001) hematite surface structure on ambient oxygen gas pressure was investigated with scanning tunneling microscopy and low energy electron diffraction. For this, thin epitaxial α-Fe2O3(0001) films grown onto a Pt(111) substrate were prepared in oxygen partial pressures between 10−6 and 1 mbar at temperatures around 830°C. In high pressures of 1 mbar an oxygen-terminated surface structure covers almost the whole sample surface. At pressures between 10−4 and 10−1 mbar comparable amounts of oxygen and iron-terminated surface areas coexist in neighboring domains. The lateral size of these domains decreases from values of 200–900 Å for pressures between 10−3 and 10−1 mbar to values around 30 Å at 10−4 mbar. At 10−5 mbar the oxygen-terminated surface areas completely vanish and an iron-terminated α-Fe2O3(0001) surface structure is formed, which is partly covered by disordered patches with lateral sizes of 10–20 Å. Further decreasing the oxygen pressure to 10−6 mbar results in a partial reduction of the surface region and the formation of coexisting α-Fe2O3(0001) and FeO1−x(111) domains that are arranged in an ordered manner forming a superstructure known as ‘biphase structure’.